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Poisson brackets are constructed by the same mathematical procedure for three physical theories: ideal magneto- 
hydrodynamics, multifluid plasmas, and elasticity. Each of these brackets is given a simple Lie-algebraic interpretation. 
Moreover, each bracket is induced to physical space by use of a canonical Poisson bracket in the space of Clebsch 
potentials, which are constructed for each physical theory by the standard procedure of constrained Lagrangians. 

1. Introduction 

Since Gardner 's  revelation [1] (see also Arnol 'd [20]) of the noncanonical Poisson structure for the 

Kor teweg-de  Vries equation of weakly nonlinear dispersive waves, and subsequent discovery by 
Gel 'fand and Dikii of the Hamiltonian form of the general theory of scalar Lax equations (see, e.g. [2], 

ch. I), the Hamiltonian formalism has surfaced in a number of hydrodynamically-minded physical 
models: two-dimensional shallow water waves [3], ideal compressible hydrodynamics and a variety of 
condensed matter problems [4], ideal magnetohydrodynamics [5, 6] multifluid plasmas [7], etc. Indeed 
with so much current activity in this area, one would expect prompt disposal of the problems which 
remain still Poisson-bracketless. 

Thus, the center of attention in questions related to Hamiltonian formalism in classical field 

theories moves from the task of simply uncovering the relevant Poisson brackets, toward general 
inquiry about the nature of these brackets and the procedures leading to their unmasking. It is on 

these two topics that we concentrate in this paper, although the "final solution" awaits a more 

extensive treatment. By "nature"  we mean here the correspondence of these brackets to Lie algebras. 
Another point of view is developed in [16] and [17], where the nature of those brackets is studied 
group theoretically. 

As the title promises, we treat three physical models, for simplicity working in ~n. In each of these 
cases, we proceed via the same four steps: 

a) We enlarge the original, physical system by introducing "parasite" va r i ab les - the  so-called 
Clebsch po ten t ia l s*- toge ther  with a variational principle for the dynamical equations in the enlarged 
Clebsch space; 

b) Next, we show that dynamics in the Clebsch space is governed by Hamiltonian mechanics, in 
standard form, with a Hamiltonian which is the energy of the original system, but expressed in the 
Clebsch space; 

c) We then determine whether the canonical Poisson structure that lives in the Clebsch space can 
be induced properly into the space of physical variables alone; 

* The history of Clebsch representations can be gleaned from, e.g. the reviews [8] and [14]. 
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d) Finally, we pinpoint the relevant  Lie algebra which is responsible for the Poisson bracket  in the 
physical space. 

The mathematical  notions necessary  for the steps c) and d), are described in sections 3 and 4 
respectively.  Magnetohydrodynamics  (MHD) which is treated in a relatively ad hoc manner  in two 
previous papers  [5, 6] is analyzed in considerable detail in sections 1 and 2 and also in sections 3, 
formula  (24), and section 4, formulae (41)-(45) and (51)-(55). Multifluid plasmas are discussed in 
section 5, where one of the two derived Poisson brackets  turns out to be exact ly the bracket  of 
Spencer  and Kaufman  [7]. Finally, elasticity theory is treated in section 6. We conclude this introduction 
by mentioning the physically meaningless,  but mathematical ly  amusing corollary of one of the last 
formulae (84) in the elasticity analysis: In one dimension, the Poisson bracket  of M H D  in the space of 
magnetic potentials is exactly the same as the Poisson bracket  for elasticity in the space of Lagrangian 
deformations.  

2. Magnetohydrodynamics (MHD) 

The M H D  fluid has mass density, p, and specific entropy,  ~. It moves  through Euclidean space R" 
with positions x~ and velocities v~ and carries an embedded  magnetic field, B~j, expressible in terms of a 
vector  potential,  A i, according to Bii = A~.j - A~.~ with subscript  notation also for partial derivatives.  

In terms of momentum density M i = p v  i the M H D  equations are 

M~ = - [M,  M j / p  + 6,i(p - ] Tr  B 2) - B , k B j , j ,  (1) 

= - M i , i ,  (2) 

= _ M j  n,~, (3) 
p 

Bij = (B j kM k / p ) , i  - ( B i k M d p )  j, (4) 

where superscr ipt  - denotes partial time derivative O[Ot, and we sum on repeated indices. Eq. (1) is the 
hydrodynamic  motion equation expressed in conservat ive  form as the divergence of the stress tensor 
for MHD, where Tr B 2 = B~jBi~ in the stress tensor.  The fluid pressure p is determined as a function 
of p and ~ f rom a prescribed relation for the specific internal energy, e (p ,  ~q) combined with the first 
law of thermodynamics ,  

d e  = e o d o  + e ,  dr{ = p-'~p do + T dr/, (5) 

where T is temperature .  
In what follows, we shall work in terms of the vector  potential A, although we shall also comment  

on counterpar ts  of the results in terms of the magnetic fields. 
Fa raday ' s  law, eq. (4) for MHD,  follows f rom an evolution equation for vector  potential A~, 

dA~ 
dt := Ai + VkAi,k = --Akvk, i ,  (6) 

which implies the relation 

A ,  = a ° O X °  (7) 
Ox~ 
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where A°(x, t) and X°k(x, t) convect  with the fluid, 

dA ° dX ° 
dt - 0 -  dt  " (8)  

As the notation suggests, X°(x,  t) can be regarded as the Lagrangian coordinate: the initial position of 
the fluid particle that occupies position x at time t, and, by (7), A~(x, 0) is the initial spatial distribution 
of magnetic vector  potentials. 

The M H D  system can be expressed as a Hamil tonian system P = {H, F} with Hamil tonian density 

M 2 
= - ~ Tr B 2, (9)  H ~-p +oe(o, 'O)  ' 

where Tr B 2 = (A~.j - A i , i ) ( A j ,  i - Ai.i). The Poisson bracket  {F, G} for densities F and G is defined to be 

[61 

8G 8F + 8G Oj~ 8F 

[ 8F ] 
+ ~ pOj ~p + aOj ~ + (MkO i + OkM i) ~ + (Aj, k - Ak,~ + AjOk) 

6G 6F 
+ - ~  (Aj,k - Ak,j + ajAk) 

where 

= p'o 

is entropy per unit volume. 
The M H D  equations are then identical to 

(1o) 

003 

(11) 
P = {H, F}, F E {p, tr, M,, A,} 

for Hamil tonian H given by eq. (9) and bracket  given by eq. (10). The bracket  (10) for MHD,  as well 
as its counterpar ts  for multifluid plasmas and elasticity will be constructed here f rom a constrained 
Lagrangian procedure.  Moreover ,  the interpretation of these brackets  will be given in terms of 
differential Lie algebras. 

2. C l e b s c h  r e p r e s e n t a t i o n  for  M H D  

The Poisson bracket  (10) may be constructed by restriction of another,  canonical,  bracket  which 
derives f rom a constrained Hamil ton ' s  principle. 

There are numerous  variational formulat ions of fluid dynamics (see, e.g. [14]). For example,  
extremals of the following variational principle 

6 f dt d"x~  = 0 (12) 

yield M H D  flows when the Lagrangian density is given by 

= lpv~ "  - -  p e ( p ,  n) + ~ Tr B 2 + da([~ + div tw) - / 3 ( ~  + v" Vn) 

- 7k(-~ ° + V" VX °) - fk(A ° + v" VA°). (13) 
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Introduction in (13) of functions {~b,/3, Yk, fk} as Lagrange multipliers has imposed the MHD 
subsidiary equations (2), (3), and (8) upon the extremals of L. 

Separate variations in Hamilton's principle (12) with respect to v, p, "0, X °, A ° produce the 
following auxiliary equations: 

6v : pv = M = pVO + [3 V'O + "yk V X  o + fk VA° ,  (14a) 

SO: d0 _ U 2 

dt  2 (e + p /p) ,  (14b) 

d Oe(p, "O) _ T, (14c) 
6n: d i  (fJlp) = on 

d (3,klp) = O. (14d) 3X°: 

d __1 X0 /3 (14e) 6 A°: ~ ( f k / P )  = P k,, ,m,,.. 

Eqs. (14b) through (14e) together with the constraint equations (2), (3), and (8) imposed by Lagrange 
multipliers can be rewritten as canonical equations for a Hamiltonian system, 

6H 6H 
p o = - { p . , H } -  6q~,  4 " = - { q t H } - 6 p , ~ ,  (15) 

with Hamiltonian density 

1 2 H = =pv + pe(p,  r l ) - ~ T r  B" (16) 

and canonical variables given by 

q ' ~ E ( p , [ 3 ,  yk, fk) ,  p~ ~ (d~, "q, X°, a~). (17) 

Then, from canonical equations (15) the equation of motion (l) may be recovered by algebraic 
manipulation and use of relation (14a). Relations of the type (14a) in the form M = poVqo with 
canonically conjugate p, and q~ have been known in the literature (see, e.g., the reviews [8] and [14]) 
as Clebsch representations. 

In three space dimensions, another,  different, Clebsch representation and Hamiltonian formulation 
for MHD, originally due to Zakharov and Kuznetsov [9], can be obtained by imposition of Faraday's  
law (4) as a variational constraint directly in terms of magnetic field, instead of in the potential form 
(8). The Clebsch representation so obtained involves an auxiliary variable, a Lagrange multiplier 
which is canonically conjugate to the magnetic field. Unfortunately though, subsequent restriction of 
the canonical bracket to the physical variables {p, o ~, Mi, B~i} does not eliminate all of the auxiliary 
Clebsch potentials from the resulting bracket. Still another Clebsch representation exists in the special 
case of three space dimensions [8]. This representation does properly restrict to a correct  Poisson 
bracket for functionals of the magnetic field, B (as opposed to functionals of the vector  potential, A). 
As these examples indicate, there may exist many different Clebsch representations for the same 
problem. Apparently,  at least some of them have a Lie-algebraic meaning (see, e.g. [15], ch. VIII, sec. 
4, or [17]). But it remains an bpen problem to understand why multiple Clebsch representations exist, 
in cases where a given physical system is not accompanied by its Lie algebraic interpretation. 
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We shall soon see that restriction of the canonical bracket (15) to physical variables {p, m M~, A~} 
through the Clebsch map (14a) produces the Poisson bracket (10). But first, in the next section, we 

discuss the induction procedure for general Poisson brackets. 

3. The induction procedure 

We describe here how to transform Poisson brackets from one space to another. Suppose we have 
a space Z with dependent variables {Z"}, independent variables (x, . . . .  xn) being fixed once and for all. 

Assume also that we have a Poisson bracket structure in the Z-space, sometimes also called a 

Hamiltonian structure. This structure consists of a skew-adjoint matrix differential operator B = (B"~) 

which to any Hamiltonian H on Z assigns an evolutionary vector field XH = B ( S H / S Z )  which has the 

following equations of trajectories: 

OZ ~ 8H 
0t - B ~  ~Z ~" (18) 

The Poisson bracket of two Hamiltonians H and F is defined as 

8F 8H 
{ H , F } =  X n ( F ) ~ T B U ~ s z . ,  (19) 

where -= means: equality modulo total derivatives (divergences). 
Not  every skew-adjoint B implies satisfaction of the Jacobi identity for the Poisson bracket. To 

determine whether a given bracket satisfies the Jacobi identity is usually a tedious job (see, e.g. ch. I of 

[2] for an extensive discussion of Hamiltonian structures). However,  there are some situations where 
a proper matrix B can be constructed very simply. One such situation is connected with represen- 

tations of Lie algebras and will be discussed in the next section. 
Here we describe a procedure of induction which produces new Hamiltonian operators B from old 

ones. Suppose we have another space V = {v ~} in addition to Z, with a map between them A: Z ~ V 

given by a set of (nonlinear) differential operators 

v ~ = v~(xj, Zt',,), (20) 

where 

Zt*~- • ~ = (cr~ or.) ~ g+. 

Let J = (J~") be the Frechet derivative of the map A, i.e. the matrix differential operator 

J ~ " =  Ov~ O ~, (21) 
O Z ~  

and let J+ be the adjoint of J. Consider the new matrix /~ = ( t~°):  

= JBJ*. (22) 

If coefficients of /~ can be expressed in terms of variables (x, v~)  only, the matrix /~ is very likely to 
define a Hamiltonian structure in V-space which is compatible, via the map A with the structure 
defined by the matrix B and Z-space. We hasten to add, however,  that there is no general guarantee 
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that  the matrix /3 will indeed define a Hamil tonian structure in V-space.  To see why, let us consider 
first the simplest case of classical mechanics ,  when n = 0 and Z and V are both finite dimensional. 

Then /3  defines a Hamil tonian structure only on the Image of A, and this can be only part  of V. If, 
however ,  A is an epimorphism,  then /3 provides a Hamil tonian structure on the whole manifold V. 
Now,  if we are not in the situation of classical mechanical  type,  that is, when n > 0, Z and V are 
infinite-dimensional je t-spaces (geometric or algebraic), and when A is indeed a differential operator ,  
then the problem arises of whether  A is an epimorphism,  or, equivalently, if the map A* on functions 
is injective. Even in simplest situations, this problem is quite tedious to untangle (see, e.g. [10], for the 
case when A is a differential version of the map given in algebra by the e lementary  symmetr ic  

functions). Our approach  to the whole question is as follows. We compute  /3 and make sure that its 
coefficients live on V; to do this one just multiplies matrices in (22). We spare the reader all 
intermediate matrix scenes and simply give the resulting bracket  as in (19). We then independently 
verify that our mat r ix /3  does indeed define a Hamil tonian structure; since all our matrices /3 have Lie 
algebraic origin, this is done easily (see section 4 for an outline of the theory). 

In the M H D  case, B is canonical in the space with coordinates p,, q~ (formerly Z")  

{F, G } =  8F 8G 6G 6F 6p~ 6q ~ 6p~ 6q ~ (23) 

For  MHD,  A is given by (10'), (14a), (7) as 

p = p,,  o-= pLq", M i =  p~q~, A~= ~ q~q~, (24) 
OEI 
3,EJ 

where two disjoint subsets of indices are such that J, I E {1, 2} and IJI = JI I (the number  of elements  is 
the same in both J and I) .  The matrix /3 that results f rom (22) under map (24) provides the Poisson 
bracket  for MHD:  formula  (10). 

4. Poisson brackets associated with Lie algebras 

In this section we recall briefly how Hamil tonian structures are generated by Lie algebras,  and 
derive a few basic formulas  for later use. For simplicity we work  in coordinates,  by fixing a basis in 
each space. 

First, consider the finite-dimensional case. Le t  L be a Lie algebra over  a field ,~ (say, • or (2). Fix a 
basis (el . . . . .  era) in L and dual basis (e* . . . . .  e*) in the dual space L* to L. Let  C k be structure 
constants  of L: if X = X~e~, Y = Yjej, then 

( X A Y ) k  k = C ijXiY~, (25) 

where A denotes multiplication in L. 
Let  u = (ul . . . . .  urn) be coordinates in L* and (u, X ) =  UkXk be the pairing between L* and L. 

Define the skew matrix B on L* by 

(u, X A Y )  = XiBiiY~, V X ,  Y ~ L. (26) 

Thus,  

B it = ukC~. (27) 
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As is well k n o w n  (see, e.g. [11]), the matrix B is Hamil tonian,  i.e. the co r respond ing  Po isson  bracket  

0G ~k 0F  
{F, G} = {F, G}(L.~ = ~ - -  ukcij (28) 

ou~ Ou~ 

does sat isfy the Jacobi  identity.  
Let  ~ be another  Lie algebra,  &: L ~ t  be a h o m o m o r p h i s m  of  Lie algebras,  &*: ~t*-~ L* be the 

dual map. Denote  by ~ =(4~*)*: C ~ ( L * ) ~ C ~ f l t  *) the induced map on funct ions .  Natural ly ,  & is 

canonical ,  that  is, 

q~({F, O}lc.)) = {q~(F), (b(G)I,,m, VF, G @ Ca(L*). (29) 

The formulae  above  for  the f ini te-dimensional  case are re levant  to classical mechanics .  In the 

f ield-theoretic si tuat ion which  conce rns  us in this paper,  one needs  only to in t roduce minor  changes ,  

as follows.  Le t  K be now a differential algebra (say, C~(Rn)) and L be a free module  over  K (say, 
Kin). Le t  O~( = a/oxi for  K = C~(R~)), i = 1 . . . . .  n, denote  commut ing  der ivat ions  of  K, and the same 

nota t ion stand for  their unique extens ions  on L. We let O ~ denote  ~' O~ . . . . .  02" for  a multi- index 

~r = (~rt . . . . .  ~,,) E Z2. Suppose  that  L is a differential algebra:  if X = X~ei, Y = Yjej then 

( X  A Y ) k  = C~.,~,~O'~X~O~Y i, C~ ..... E K (30) 

with finite sum for  every  k, where  X A Y  denotes  multiplication in L and (e~ . . . . .  e~) is a basis in L. We 

are interested in the case when  L is a Lie algebra. 

Le t  Ul . . . . .  u~ be differentially independen t  variables,  which  can informal ly  thought  of  as "coor -  

dinates on L * " .  We write 

(u, x )  = u~X~. (31) 

Let  K~ denote  the differential ring in variables Ul . . . . .  um over  K, in o ther  words ,  K ,  is a 
po lynomia l  ring in variables  ul ~J with der ivat ions  Ok extended  to act  on K,  as: Ok(u~/~) = u ( / " ~ ,  

k = 1 . . . . .  n. This K,, can be thought  of  as " func t ions  on L* ."  

Finally,  we let Im ~ denote  Ek Im Ok and we write a --- b if (a - b) E I m  ~.  
We in t roduce  the skew-adjo in t  matrix B in K,  by  the formula  

(u,  X A Y> -~ X~B~iYj, V X ,  Y E L .  (32) 

Thus,  

B ~j = ( -  O)'~UkC~,~,,O ~ (33) 

and the co r re spond ing  Po i s son  bracke t  

{F, G} ( - 0 )  ugCij,~,~O Ou i (34) 

does sat isfy the Jacobi  identi ty [12, 15]. I f  H @ K , ,  then " t ra jec to r i es"  of  the evolut ion field 
XH = B ( O H / O u )  sat isfy 

OH 
ui = B ii Ouj" (35) 

Let  g be another  differential Lie algebra over  K with the basis {f,j} and let K~ be the "r ing of  
func t ions"  on ¢~*. Le t  &: L ~  g be a h o m o m o r p h i s m  of  Lie algebras,  given by a linear differential 
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opera tor  ¢b: if X = Xiei then ¢b(X) = R = Qie~, where 

Q~ = &,(X) = cho(Xi), O,j = b~O", b}~ E g .  (36) 

As in the finite-dimensional case, we let & = ((b*)* denote a homomorph i sm K,, -+ K~: uniquely defined 
by its propert ies  

1) &01 = 01&l, l = 1 . . . . .  n, 

2) 4)(ui)= &~j(v,). (37) 

Again, ~b is canonical,  i.e. 

&({H, F}) --- {&(H), 6(F)},  VF, H E K,,. (38) 

4.1. Semidirect products 

We will use this construct ion in the following form. Let  V1 and V2 be K-modules  and R~: L 
Diff(V~) be representat ions of L by (linear) differential operators  in V~. Let  A: VI-~ V2 be a linear 
differential opera tor  for which actions R, and R2 are compatible:  

AR~(X) = R2(X)A, V X  E L. (39) 

Consider new Lie algebras L @  V~ (semidirect  products).  Then operator  A defines a Lie algebra 
homomorph i sm idO ~ (described above under  notation &) which we again denote by A: 

A: L@ V I ~  L@ g2, (40) 

given as 

a ( x ;  v,) = (x;  a(v,)). 

In our applications L will be always the Lie algebra of vector  fields on R°, ~ ( R " )  the V i will be direct 
sums of modules of differential forms A ~ on which vector  fields act naturally by Lie derivatives,  and A 
will be direct sums of differentials d~: A ~ ~ A  ~+'. 

To illustrate details, let us consider firstly the case of L = @(R") itself. We identify ~(R")  with K" 
in the following way: X = (X, . . . . .  X,) acts as X~(O/Ox~) on A*(R"). To conform with physical usage 
we denote by Mi the dual coordinates on L* (previously denoted as u~). 

To compute  the corresponding Poisson bracket ,  we use (32). Let  Y = Yj(O/Oxi). Recall that 
multiplication in ~ (R")  is defined by the Lie bracket ,  

[X, Y] = ( X y i , i -  YjXi4)ai. 

Then eq. (32) t ranscribes for this case into 

M,(Xyg 4 - YjX,,j) =- XjMiYi.j + X~(MiYj),j = Xi[MjOi + OjM,]Yj 

and we get the skew-adjoint  matrix 

B 'j = Mia~ + aiMs. 
Consequent ly ,  the Poisson bracket  (34) is realized as 

6G 6F ( SG 8F 8F 8 G )  {F, GI=~(MiO~+OiM, I ~ - M j  ~ O ~ S M j  8 M i 0 ' ~  . 

(41) 

(42) 
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We denote this bracket  {F, G}M : in the general L O V case {F, G}M adds to those pieces of the bracket  
which correspond to action of L on V. 

We compute  each piece of the bracket  separately,  for the action of L on A ~= A~(R"), with 
i -- 0, 1, n - 1, n. Le t  us start  with A°(R ") = C~(Nn). Let  p denote the corresponding dual coordinate.  If  
we write elements  of L G  A ° as pairs (X;  f)  then, for another  e lement  (Y;  g ) E  L O  A °, we have 

[(X; f) ,  (Y;  g)] = ([X, Y]; X(g)  - V(f)). 

Thus,  if here and below we agree to omit (M, [X, Y]) terms already worked out above in (42), our 

formula  (32) directs us to 

p(X(g)  - V(f)) = p(Xig,i-  Yif,i) ~ Xi(pOi)g + f(OiP) Yi. (43) 

Thus,  we get the piece of the Poisson bracket  corresponding to A°: 

,SG 8 F +  8G ,SF (SG SF 8F SG) 
{F, G}o = - ~ i  P O i V  V Oil3 ~ ~ p " ~ i  Oi 8p 8M~i O i v  " (44) 

For a direct sum of several  A°'s, we prescribe indices to corresponding O'S: Pl, P2, etc. 
At this point we pause for a m om en t  to see what  we have obtained so far. Let  us take 

{V, G}M + (F, G}o, + (F, G}~. (45) 

Compar ing (45) with (10) we see that this is exact ly the Poisson bracket  for compressible ,  ideal 
hydrodynamics  with p~ = p, 02 = or, and with magnetic terms absent.  

Next  let us take V = A  n. Let  t o=fdnx ,  v = g d " x  be arbitrary elements  of A", where f, g E A  °, 
dnx = dxl • • • dx,. Let  0 denote the dual coordinate on V*: (0, co) = Of. 

Since 

X(v)  = X(g  d"x) = IX(g)  + g div X] d"x 

and 

[(X; o)), (Y;  1,)] = ([X, Y]; X ( v ) -  Y(~o)), 

the O-terms of the matrix B are obtained as follows: 

(0, X (v )  - Y(o2)) -- O(X,g,i + gXi, i-  YJ,i - fY , , , )  

=- X,(Oc),- a~O)g - f ( O 0 , -  O~O) Y, 

= X; ( -  0,)g + f(O,i)Y~. (46) 

Thus,  the A n piece of the Poisson bracket  is 

{F,G}o = (8~_ 8F 8G 8 F )  
- 80 80 8M~ 0~. (47) 

This part  of the Poisson bracket  will turn out to be summoned  by elasticity theory in eq. (81) below. 
Consider now V = A  ~. Let  o)=(oidxj, v = v j d x i @ V  be typical e lements  in A ~ and let /3= 

(/31 . . . . .  /3~) denote  coordinates on V*: (/3, to) =/3j(o i. Since 

OX~ dxj X(t°) = (X~ o-~) (c°i dxj) = (Xiwi,' + t°~ Oxi / 



756 

and 

[(X; w), (Y:  v)] = ([X, Y]" X ( v ) -  Y ( w ) ) ,  

we have (recall t h a t  (M, [X, Y]) terms are omitted) 

[ a X~ w~ 8 Y~ ] 
( B ,  X ( u )  - Y ( ~ o ) )  = B ~ [ X & . ~  - Yiw~,~  + Pk 

3x~ ] 

- X ; ( , S i O i -  i _ i y 

Thus 

{F, G}~ 

D.D. Hohn and B.A. Kupershmidt/Poisson brackets and Clebsch representations 

8 G  8 F  8 G  O 8 F  

= -  t3~ F~, o, 813, 8M, 8, +/3~ ~ .  o~ aM, 813, o~ ~ . 

(48) 

(49) 

(50) 

Finally, we take V = A" ~. Let co = w~0~__]d"x, v = v~0i___]d"x be typical elements of A" L, where we 
denote 0, = a/Ox~ for convenience.  Let A = (At . . . . .  A,,) be coordinates on V*: (A, ~o)-A~o~. Since 

X(v)  = (X~vi,k + PiXk.k -- vkXi,k)Si __] d"x ,  

w e  h a v e  

( A ,  X ( v ) - Y ( w ) ) = A,[Xku,.k + u,X<k - vk X~.k -- ( Ykw~.k + w~ Y~.k -- wk Y, .D ] 

=- X~(AiOi + A,,i - Ai.~)ui + ~oi(Ai.i - Ai.i + O i A ) Y j ,  (51) 

which gives us the Poisson bracket  piece 

8 G  8 F  @G 8 F  
{F, G},~ = ~ ,  (A~,i- Ai~ + A~Sj) ~ + ~  (A~i-  Aj~ + 0~A~) (52) 

• ' • 8M" 

Comparing this last piece with (10) we see that the sum 

{F,  G}M + {F ,  G}A + {F,  G} , ,  + {F,  G},~ (53) 

is exactly the Poisson bracket  of MHD, which thus lives on the dual to the Lie algebra 

~(R")  O (A" '(R") (~ C ' (R ") @ C~(R")). (54) 

Moreover ,  the Poisson bracket  for the dual of the Lie algebra, 

(R °) O (A"-2(R") @ CXR") O C~(R")) (55) 

generates M H D  equations (I)-(4) directly in terms of magnetic fields instead of vector  potentials. 
Indeed, formula B~ i = A~.j - Ai,~ is just the dual counterpar t  of the homomorphism of Lie algebras 

A =  1Od:  9 ( R " ) O A  " 2 ~ ( R " ) O A n  

provided one denotes dual coordinates on (A" 2), = A 2 as B~ i, and Hamiltonian H in (9) depends upon 

A, only through B~i. 
We hasten to stress however  that existence of Poisson brackets  in both A- and B-space  which, 

moreover ,  are compatible with respect  to the "introduction-of-potentials  map"  B = dA, is not to be 
expected.  In general, the existence of one such bracket  does not imply the existence of the other, and 
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even if both brackets are present, they may be totally unrelated (as happens, e.g. in the theory of 
integrable systems). To add intrigue to surprise, we remark that in both of the remaining s i tuat ions-  
multifluid plasmas and e las t ic i ty- there  will again appear such compatible Hamiltonian structures in 
physical and potential spaces. 

5, Mult i f luid p l a s m a  (MFP)  

The multifluid plasma is a system of ideal, charged fluids which move together under self- 
consistent electromagnetic forces. The particle species are labeled by superscript s, with fluid 

, s ,  s velocities ~ ,  mass densities p~; specific entropies ~ ; self-consistent electric field E~; and magnetic 
vector potential A~. The vector potential produces magnetic field 

B# = A~.j - Ai.~. 

The MFP equations consist of dynamical Maxwell equations for the self-consistent electromag- 
netic fields; conservation equations for mass and entropy of each species; and the MFP motion 
equation 

E~ = -B~j,i- ~ a~p~v?, 
s 

A~ = - E~, 

[~' = - ( p ~ v  ~),  i. (56) 

T ~ s  s s 
- -  V ] T~ ,i, 

V i = -- V jV i.i---~-T P .i + a ~ ( v  iBii + E i ) .  

(Note: in this section there is no summation convention on superscript s.) The static Maxwell source 
equation, 

Ei.i = ~ ,  a ~p~ (57) 

although nondynamical,  is compatible with the flow, i.e. if initially true, eq. (57) will remain true under 
temporal evolution given by eqs. (56). 

Hamilton's principle 

8 f d t d ~ x ~ = 0  (58) 

implies the MFP equations (56) provided the Lagrangian density, 5¢, in the space of dependent 
~s s s variables {~ i, p , ~ , El, Bij, Ai, ¢bs,/3s} is given by 

_ 1 2E + A i [ E i  + Bii,i + ~ ,  a*p*v~] 
s s 

s ~ s 

+ ~  ~b~[b ' + (p~vi).i]- ~ / 3 ' [ f i  ~ + vi~,i]. (59) 
s s 

Here is how eqs. (56) are obtained. Variations with respect to {A~, ~ ~,/3*} impose respectively upon 
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extremals  of ~ the dynamical  Maxwell  source equation, conservat ion of mass for each species, and 
adiabatic convect ion as constraint  conditions. 

Variations in Hamil ton ' s  principle (58) with respect  to the remaining variables {v~., p~, E~, B 0, ~ }  
produce the following auxiliary equations: 

" s s 8v~: M~ := p~(v~ + a ' A k )  = P~4'~k + 18 "O,k, (60a) 

SoS: ~ + v)'dp,} =~(v; )2-- (e  s + p ~ / p ' ) +  a~Ajv~ ,  (60b) 

8Ei: Ai  = - E i ,  (60c) 

8Bii: Bij = Ai,i - Ai.i, (60d) 

8"0s: [3 ~ +(v~[3s).i  = p~OeS/Orl s, (60e) 

where Oe'/Orl ~ = T ~ is the species temperature .  
The MFP motion equation then follows readily by algebraic manipulation of eqs. (60). 
Eqs. (60b)-(60e) together with the constraint  equations imposed by Lagrange multipliers {A~,4~ ~, [3,4} 

can be quickly recast  into canonical equations,  with Hamil tonian density, 

1 1 H = ~ ,  [~pS(vS)2+ p~e*(p s, r/~)] - a T r  B 2 + ~ E  ", (61) 

with canonical variables 

q~ ~ q~ i = ~ ,  = ' 0 ,  q i = E i ,  

P~ ~ . (62) 
, = p , p ~ = [3~, Pi = A i  

and with v~ in (61) taken f rom eq. (60a). 
Moreover ,  the total momentum density for each particle species appears  in the Clebsch represen- 

tation as 

s s s s s 
M i = P (v i + a ~Ai) = p ~;t ~,i 

in terms of canonically conjugate variables. 
We now describe the above computat ions  in terms of maps between Poisson brackets.  We begin 

with the canonical Poisson bracket  

8p~' 8q; ~ ,  8A~ 8E,  -g-A, " (63) 

A alone and consider maps f rom variables (p;,  q ; )  into new variables 

aq; 

At first, we leave E and 
s p S  (Mi, ~r'): 

" s s ,~ . p~ o.S ,4 M ,  = p ~q ~,~, = P ~ ; = P ~q 2. (64) 

For each s, these expressions are just eqs. (24) without A~. As we know from the calculations for ideal 
(Mi,  p , o -s) space is just hydrodynamics ,  the resulting bracket  in - s 

- y ~  ( { F ,  GIta~ + { F ,  G}ps + { F ,  G } ~ 0 ,  ( 6 5 )  
s 

which (up to the minus sign) is the bracket  on the dual to the direct sum of Lie algebras, 

(~ [~ (~" )  Q (C~(R") G C~(N"))] - (66) 



D.D. Holm and B.A. Kupershmidt/Poisson brackets and Clebsch representations 359 

Taking into account the (A, E) part as well, we find ourselves in possession of the following bracket in 
- s s s ( M  ~, p , o- , Ai, Ei) space: 

- { F ,  G } =  ~ f a G  Ojp~ OF + 8G Ojo.~ 
t a p  aM{ act' 

J 

+ - + " 

8F + 8G [ 8F  8F 
. p'Oj + o"~Oi 

aM i 8M~ t 8p' &r" 
+ (f/i~O, + OjMk) 

(67) 

The next step is the invertible change of variables: 

M~ =f / I ]  - aSp'Ai = p~v~ (no sum on s). (68) 

All other variables remain the same. A new bracket is then easily produced from (67): 

aG [ 6F aF  ~ aF SpS aF  ~ , a F ]  
+ -8~k ps Ok aPVO~ + °"~ Ok a-~V~s + ( M ~ Ok + OiM k ) 8 M 7  + a 8E7 + a p ( A,,k - Ak,i) ~ 

aG 8 F ~  8G 8F 8G 8F 
8Ek a'ps ~ - t -  8E~ 8A t  8Ak 8Ek" (69) 

This formula represents the Poisson bracket in the space of magnetic potentials  plus other physical 
variables. But notice that Ai is involved only in the combination Ai,k-Ak,~ = B~k. Thus, one can 
immediately rewrite this bracket in the space of magnetic fields plus physical variables as 

{(8G aG s, aF  -{v,o}=E ) a M :  

8Ek ~ + ~ ~ -  0j ~ + ~ 0, 6Bik" (70) 

In R 3, this bracket is the same as the one reported by Spencer and Kaufman [7], obtained by another 
method. 

6. Elasticity 

The equations of ideal, nonlinear elasticity in Eulerian coordinates are [13, 14] 

vjvi,j - 1 Piu, (71 a) bi 

t5 = - (pvj),j, (71 b) 

"il = - rift#, (71 c) 

j~o = _v jXO . (71d) 

Here X°(x ,  t) denotes the Lagrangian coordinate: the initial location of the particle that occupies 
position x at time t. The Lagrangian coordinate X ° is a particle label; so it moves with the fluid and 
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satisfies (71d). The tensor X~j = F~i(x, t) is the displacement  gradient, which measures  the relative 
strain of the medium. Also P~j(x, t) is the stress tensor,  p is the mass density, and 7 is the specific 
entropy. The stress tensor P~j has the opposite sign of the "Cauchy  stress,"  in order to agree with fluid 
dynamics  convention.  

In the elasticity equations, the stress tensor Pii arises f rom the given equation of state for specific 

internal energy e = e(Fi~, "0) according to 

0e 
P~i =-pFki oFkj" (72) 

Thus,  in terms of tensors P~i and F~i the first law of the rmodynamics  for elasticity may be expressed as 

de = - p  ~F~k~P~i dFti  + T dr/, (73) 

where T = Oe/O'O is the temperature ,  and the density p(x,  t) is related to the initial density p~ = p(x  °, O) 

by 

p = p~ det F 

through the nonvanishing Jacobian,  det F = IO(XC~ . . . .  X~,',)/O(x~ . . . . .  x~) I. 

The connect ion of the ideal elasticity equations with fluid dynamics is through the form of the 
dependence of e(F~, 7 )  on the displacement  gradient. When the specific internal energy equation 
depends only upon det F and 7, that is, e = e(det F, 7) then motion equation (71a) reduces to the usual 
motion equation for ideal fluid dynamics and eq. (73) reduces to the First Law of thermodynamics  for 

fluids, eq. (5). 
A constrained Lagrangian density has been associated with ideal elasticity theory by Seliger and 

Whitham [14], 

58 = ,_pv- - pe(F#, 7 )  + d)(t5 + div pv) - 13(~ + v • V'0) - ykO ~° + v • X~). (74) 

From Hamil ton ' s  principle for this Lagrangian density, the following variational equations result: 

~ .  X 0 ~vk: Mk pvk = P&.k +137,k + 7i ~,k, (75a) 

dd~ _ v 2 0e) (75b) 
'~P: d t  2 (e + p Op ' 

Oe (75c) 87:  ¢i + (/3v~),~ = 0 5-~n' 

1 (p 0e "~, (75d) ~xO: d (w/P) = o oj OF~J 

,~q~ : [~ = - (Ovk),k, (75e) 

6~: ~ =--VkT.k, (75f) 

6"yk : 2 °  = - v~X°,~. (75g) 

Seliger and Whitham [14] have shown that these equations reproduce the motion equation (71a) for 

ideal elasticity. 
Moreover ,  the variational equations (75) are readily seen to be equivalent to canonical equations 
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with canonical variables 

po ~ (p,/3, yj), qk E ((b, n, X~,  (76) 

and Hamiltonian density H given by 

I 2 H = ~pt, + pe(I::.,j, .q), (77) 

which is numerically equal to the energy density of the elastic medium. In terms of the canonical 
variables p~, q" the Clebsch representat ion (75a) for momentum density may again be expressed as 
Mk = P~q.~. Hamiitonian interpretation of these computations is easy now. 

We start off with the canonical Poisson bracket in the Clebsch space: 

8F 8G 8G 8F 
{V, G } -  8p. 8q, 8p. 8q." (78) 

As in the MHD case, we introduce the variables 

cr • Plq2,  Mi  = P~q~,i (79) P = Pl, 

and in addition 

X°i = qi+2. (8O) 

Restriction of canonical Poisson bracket  (78) to the variables {p,(r, Mi, X ~  readily produces the 
Poisson bracket  for elasticity: 

{ F , G } = { F , G } M + { F , G } p + { F , G } ~ + ( S G  8F 8G 8 F ~ x  o , . , .  

The same bracket  is obtained in [4] by a phenomenological  method. Upon comparison of the last term 
in this bracket with formula (47) we see that the X ° part corresponds for each i, to the action of @(R") 
on A"(R"). Thus, the Lie algebra responsible for this bracket is 

and we can easily take advantage of this fact  as follows. 
Differential d: A" t __) A', as explained in section 4, induces the homomorphism 

d: LE,-~ LEI (83) 

from the Lie algebra 

LE l = ~ (~n)  (~ (C~(Rn) (~ C~(an) ~ An-|(an)(i)) (84) 

into LEt. If we denote coordinates on the ith copy of (An-l) * by AIi], j = 1 . . . . .  n, as in (51), then the 
map dual to (83) will be given as 

a}" = - x°, = - Sj. (85) 

Now the Hamiltonian H depends upon X ° only through F~, that is, through AI il. In other words, H 
in fact lives on the dual to /~EI, and it comes to elasticity under the pull back generated by (85). 
Thus, the Lagrange variables for elasticity, X~, serve as "potentials"  for dynamics on the dual to LE~. 



362 D.D. Holm and B.A. Kupershmidt/Poisson brackets and Clebsch representations 

Remark.  The referee suggests that one might be able to reduce variables {F~j} to the smaller set of 
variables (Cauchy deformat ion tensor) e~ i = (F'F)~ i = Fk~Fki. This is indeed the case, which can be seen 
as follows. Let us concentrate  only on the F~ i part  of the bracket  associated to /~E~, which can be 
written, using (52), as 

81 8J 6I 8J 
{J, I}~- = ~ (OkF,, - F;k.~) ~ + ~ (V, ka, + V,,.k) 8Mk' (86) 

where I and J are two functionals denoted earlier as F and G, and {F~,},-L ....... are coordinates on the 
dual to the sth copy of A" L(R"). 

Suppose that I and J depend upon F~j through % Since 

Oe~ 

we get 

8J _ a G e  8J = 2F~ 8J 
8Fi~ 3Fii 8e,,¢3 8ei¢~ (87) 

which turns (86) into 

81 8J + 81 (2eoka~ + e~,k) 8-~-k (88) {J, I},, = ~ (2ake,~ - eke,,) ~ 8e,, 

This piece of the bracket  is linear in the variables % Therefore ,  we can find an appropriate  Lie 
algebra. An easy computat ion shows that the total bracket  

{S, I} = {S, I}M + {S, I} 0 + {S. I},~ + {S, I},, (89) 

comes from the Lie algebra 

~(R") Q [C~(R ") @ C~(R ") @ (~(R") @ A"-'(R"))], (90) 

where @(~")@~ A" I(Rn) is a C=(R")-module generated by elements ~ , i Y i @ ( . o i  such that Ei Yi_..Jt-oi = 
0. The action of ~ (R n) on ~(R n) @~ A" L(A"), involved in (90), is given by 

X ( Y  ® o~) = [X, Y]  ® ~o + Y @  X ( w ) .  (91) 

Variables e~j are dual to [0~@ Oi__]d"x) + Oi@ (0i___]d"x)]. Notice that the module ~ ( R " ) @ ,  A" ~(R n) in 
(90) is isomorphic,  as a ~(R")-module ,  to S2(@(R")@A"(~")) ,  which is the space of contravariant ,  
symmetr ic ,  second-rank tensor densities, i.e. co-metric densities. 

Note. Since this paper  was submitted, some progress has been made concerning Hamiltonian 
structures of physical models in the presence of hydrodynamics .  First, Poisson structures have been 
found both for Yang-Mills  Vlasov plasmas and for fluids interacting self-consistently with Yang-Mills  
fields [18]; the new feature here is that the semi-direct product  is formed (among other ingredients) by 
the Lie algebra ~(R")  acting by derivations on the Lie algebra C~(~" )@a,  ¢1 a semisimple Lie 
algebra. In addition, Marsden et al. [17] have shown how to interpret Clebsch variables and Poisson 
brackets  for systems of semi-direct product  type,  like the heavy top, MHD,  and elasticity, f rom the 
point of view of reductions connected with appropriate  Lie groups which are associated to Lie 
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algebras of the present paper (except for the heavy top, which belongs to classical mechanics). 
Finally, Hamiltonian structures have been found for superfluid systems of 4He and 3He-A [19]. The 
new features here are: for 4He, the Hamiltonian matrix has both a part which is linear in the variables 
and, thus, is associated to a Lie algebra L, say, and also a c o n s t a n t  part, which corresponds to a 
generalized two co-cycle on L. For 3He-A, multiply-knotted semi-direct products occur, formed by 
derivations of different Lie algebras. These are accompanied by a peculiar (2 dim g + 1)-dimensional 
subalgebra, corresponding to the interaction between the density P E A"(R") and the order parameter 
,/, e C~(R", ~) Q C. 
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